

Available online at www.sciencedirect.com

Tetrahedron Letters 47 (2006) 1839–1843

Tetrahedron Letters

a-Ethynylation reaction of ketones using catalytic amounts of trialkylgallium base

Yoshio Nishimura, Ryo Amemiya and Masahiko Yamaguchi*

Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan

Received 28 November 2005; revised 26 December 2005; accepted 28 December 2005 Available online 23 January 2006

Abstract—Trialkylgalliums serve as a base to generate enolates from ketones. In the presence of catalytic amounts of a trialkylgallium (20–40 mol %) and 2,6-di(t-butyl)-4-methylpyridine (30–50 mol %), acyclic, and cyclic ketones were ethynylated at the α carbon with chlorosilylethyne. The selective monoethynylation and diethynylation could be conducted for cyclic ketones by appropriate choices of the conditions, in which the addition of a catalytic amount of butyllithium (20–40 mol %) increased the yield. \odot 2006 Elsevier Ltd. All rights reserved.

The alkylation of ketone enolates is one of the most fundamental C–C bond forming reactions in organic synthesis. Alkynylation, however, was not well developed, and only one method was reported by Kende and co-workers, a-chloroethynylation of ketones using stoichiometric amounts of lithium diisopropylamide.^{[1,2](#page-3-0)} Previously, we developed stoichiometric^{[3](#page-4-0)} and catalytic^{[4](#page-4-0)} a-ethynylation reactions of silyl enol ethers derived from ketones with chlorosilylethyne in the presence of GaCl₃.^{[5](#page-4-0)} Although this method provided a convenient access to a-ethynyl ketones, silyl enol ethers needed to be prepared from ketones. We also reported a catalytic a-ethenylation reaction of ketones, in which gallium enolates were formed directly from ketones and GaCl₃.^{[6](#page-4-0)} Developed in this study is the α -ethynylation reaction of ketones using catalytic amounts of trialkylgalliums (Scheme 1). The organometallic compounds can be used as base to form enolates from ketones. Alkylgallium

Scheme 1.

0040-4039/\$ - see front matter © 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2005.12.133

compounds have been used as alkylating reagent, τ Lewis acid, 8 or reducing reagent^{[9](#page-4-0)} in organic synthesis, and use as base remains unexplored.[10](#page-4-0)

Our investigation on the α -ethynylation reaction of ketones was started using GaCl3. Under an argon atmosphere, a mixture of 2,5-dibenzylcyclopentanone 1 (cis:trans = 1:1.5), 2,6-di(t-butyl)-4-methylpyridine (100) mol %), GaCl₃ (20 mol %), and chlorotriethylsilylethyne 2 (2.5 equiv) in o -dichlorobenzene (4.0 M) reacted at 180 °C for 12 h, and 2,5-dibenzyl-2-(triethylsilyethynyl)cyclopentanone 3a was obtained in 11% yield [\(Table](#page-1-0) [1,](#page-1-0) entry 1). After various trials, the addition of butyllithium (100 mol %) was found to increase the yield of 3a to 40% (cis:trans = 1.5:1), which was accompanied by 2,5-bis(triethylsilylethynyl)-2,5-dibenzylcyclopentanone 4a in 31% yield (cis:trans = 2.1:1) (entry 2). The cis-stereochemistry of the major isomer of 3a was determined by reducing to $(1R^*$, $2S^*$, $5S^*$)-2,5-dibenzyl-2-(triethylsilylethynyl)cyclopentan-1-ol 5 as a single isomer, and observing the NOE between the 1-proton and the 2-benzyl protons and that between the 1-proton and the 5-proton [\(Scheme 2\)](#page-1-0). To determine the stereochemistry of 4a, two isomers were reduced to single isomers of c-2,5-bis(triethylsilylethynyl)-t-2,5-dibenzyl-r-1-cyclopentanol 6 and $(2R^*, 5R^*)$ -2,5-bis(triethylsilylethynyl)-2,5-dibenzylcyclopentan-1-ol, and the latter was acetylated leading to $(2S^*$, $5S^*$)-1-acetoxy-2, 5-bis(triethylsilylethynyl)-2,5-dibenzylcyclopentane 7. The $13C$ NMR spectra of 6 and 7 showed 13 peaks and 25 peaks, respectively, which indicated 6 to be the meso-compound derived from cis-4a, and 7 the racemic compound

^{*} Corresponding author at present address: Tohoku University, 21st Century COE Program CRESCENDO, Sendai, Japan. Tel.: +81 22 795 6812; fax: +81 22 795 6811; e-mail: [yama@mail.pharm.tohoku.](mailto:yama@mail.pharm.tohoku. ac.jp) [ac.jp](mailto:yama@mail.pharm.tohoku. ac.jp)

Table 1. a-Ethynylation of 2,5-dibenzylcyclopentanone 1

^a The reaction was conducted at 140° C.

 b 2,6-Di(*t*-butyl)-4-methylpyridine was not added. c Reaction time, 0.5 h.

Scheme 2.

formed from trans-4a. The stereochemistry of 6 was determined by the NOE between the 1-proton and the 2,5-benzyl protons.

It was presumed that $GaBu_3$ generated from $GaCl_3$ and butyllithium was involved in the ethynylation reaction, and, in accordance, the treatment of 1 and 2 at 180 $^{\circ}$ C for 12 h in the presence of $GaMe₃$ (20 mol %) gave 3a and 4a in 40% and 22% yield, respectively (Table1, entry 3). Lowering the reaction temperature to 140° C resulted in the decrease of the products (entry 4). The complete decomposition of the products and the starting materials occurred in the absence of $2,6$ -di(t-butyl)-4-methylpyridine (entry 5). It was noted, however, that the reaction for 0.5 h at the temperature in the absence of the pyridine gave considerable amounts of 3a and 4a, which indicated that $GaMe₃$ itself deprotonated at the carbonyl α -position (entry 6). GaEt₃ (20 mol %) gave a comparable result with $GaMe₃$ (entry 7). It is shown that alkylgallium compounds can be used as base to generate a gallium enolate from a ketone.

The reactivity of gallium enolates toward 2 was compared ([Scheme 3\)](#page-2-0). When 1 and 2 (1.5 equiv) reacted with GaCl₃ (1 equiv) in *o*-dichlorobenzene at 100 °C for 6 h, the ethynylated products 3a and 4a were obtained in only 10% and 5% yields, respectively, with recovered 1 in 77% (Scheme 2). Use of GaMe₃ (1 equiv) in place of GaCl₃ increased the yield of 3a and 4a to 40% and 15%, respectively, under the same conditions. The reactivity of 2 was compared with triethylsilylethyne 8. When 1 and 8 (1.5 equiv) reacted with $GaCl₃$ (1 equiv) in *o*-dichlorobenzene at 100 °C for 6 h followed by workup with 10 M HCl at room temperature for 2 h, the silylethenylated product 9 was obtained in 52% yield. The results indicated that both $GaCl₃$ and $GaMe₃$ could effectively generate gallium enolate from 1, and the reactivity of the dialkylgallium enolate was higher than the dichlorogallium enolate in the carbogallation with 2. The dichlorogallium enolate reacted more effectively with 8 than 2, which might be ascribed to the steric reasons. As for the ethenylation using $GaMe₃$, 9 was obtained in 33% yield, which was accompanied by a propargylic alcohol 10 in 18% yield. Although the dialkylgallium enolate underwent carbogallation with 8 as well as 2, the reaction competed with the deprotonation of acetylene C–H.

The selective mono- and diethynylation of 1 were next examined. When 1 reacted with 2.5 equiv of 2 in the presence of $GaMe₃$ (40 mol %) and 2,6-di(t-butyl)-4-methylpyridine (50 mol %), diethynylated 4a was obtained predominantly in 66% yield with monoethynylated 3a in 26% yield. The addition of a catalytic amount of butyllithium (40 mol %) increased the yield of 4a to 88%, and decreased 3a ([Table 2,](#page-2-0) entry 1).^{[11](#page-4-0)} The selective monoethynylation could be attained using an excess ketone. When 2 equiv of 1 reacted with 2 in the presence of GaMe₃ (20 mol %), butyllithium (20 mol %), and 2,6-di(t-butyl)-4-methylpyridine (30 mol %), 3a was predominantly obtained in 58% yield based on 2, which

Scheme 3.

was accompanied by 4a in 16% yield. Use of tributylsilyl derivative 11 improved the yield of 3b to 72% with 4b in 16% due to the less volatile nature of the chloroacetylene (entry 2). Without butyllithium, the yield of 3b decreased to 51%.

The selective mono- and diethynylation of several fiveor six-membered cyclic ketones were conducted employing these conditions (Table 2, entries 3–8).

Acyclic ketones were a-ethynylated under slightly modified conditions. In the presence of GaEt₃ (25 mol $\%$) and 2,6-di(t-butyl)-4-methylpyridine (30 mol %), isobutyrophenone 12a was converted to 13a in 71% yield with recovered 12a in 5% (Table 3, entry 1). When the reaction was conducted at a lower concentration (0.25 M), the vield of 13a increased to 80% (entry 4).^{[12](#page-4-0)} Use of GaEt₃ gave the improved yields of $13a$ compared to $GaMe₃$ in this case (entries 2 and 5), which might be related to the basicity of the organogallium compounds. The yield decreased to 21% using GaCl₃ under the same conditions as was in the case of cyclic ketones (entry 6).

Various aromatic and aliphatic acyclic ketones were α -ethynylated in the presence of GaEt₃ ([Table 4](#page-3-0)). The electronic effect of the aromatic p-substituents of iso-

^a Conditions A: ketone and 2 (2.5 equiv) were reacted in the presence of GaMe₃ (40 mol %), butyllithium (40 mol %), and the pyridine (50 mol %). Isolated yields based on the ketone are shown. Conditions B: ketone (2.0 equiv) and 11 were reacted in the presence of $GaMe₃$ (20 mol %), butyllithium (20 mol %), and the pyridine (30 mol %). Isolated yields based on 11 are shown. b 4.0 equiv of 2 was used.

Table 2. a-Ethynylation of cyclic ketones

Table 4. α -Ethynylation of acyclic ketones

butyrophenones 12a–d exhibited a small effect on the yield (entries 1–4). α , β -Unsaturation did not interfere with the ethynylation as indicated by the reaction of 12k (entry 11). The ethynylation of cyclohexyl isopropyl ketone 12m took place at the isopropyl site preferentially (entry 13).

In summary, a-ethynylation reaction of ketones was developed using catalytic amounts of trialkylgalliums. It should be noted that trialkylgalliums can be used as base to deprotonate at the α -position of ketones generating gallium enolates.

Acknowledgements

The authors thank JSPS, for financial support. A fellowship to Y.N. from JSPS, for young scientists is also gratefully acknowledged.

References and notes

1. a-Ethynylation of ketones. (a) Kende, A. S.; Fludzinski, P.; Hill, J. H.; Swenson, W.; Clardy, J. J. Am. Chem. Soc. 1984, 106, 3551; (b) Kende, A. S.; Fludzinski, P. Tetrahedron Lett. 1982, 23, 2373; (c) Kende, A. S.; Fludzinski, P. Synthesis 1982, 455.

- 2. a-Ethynylation of 1,3-dicarbonyl compounds and nitroalkanes. (a) Ochiai, M.; Ito, T.; Takaoka, Y.; Masaki, Y.; Kunishima, M.; Tani, S.; Nagao, Y. J. Chem. Soc., Chem. Commun. 1990, 118; (b) Molony, M. G.; Pinhey, J. T.; Roche, E. G. J. Chem. Soc., Perkin Trans. 1 1989, 333; (c) Molony, M. G.; Pinhey, J. T.; Roche, E. G. Tetrahedron Lett. 1986, 27, 5025.
- 3. (a) Amemiya, R.; Fujii, A.; Arisawa, M.; Yamaguchi, M. Chem. Lett. 2003, 32, 298; (b) Arisawa, M.; Amemiya, R.; Yamaguchi, M. Org. Lett. 2002, 4, 2209.
- 4. Amemiya, R.; Fujii, A.; Arisawa, M.; Yamaguchi, M. J. Organomet. Chem. 2003, 686, 94.
- 5. We also reported diethynylation reaction of 1,4-enynes, and o-ethynylation reaction of N-alkylanilines and phenols using GaCl3. (a) Amemiya, R.; Suwa, K.; Toriyama, J.; Nishimura, Y.; Yamaguchi, M. J. Am. Chem. Soc. 2005, 127, 8252; (b) Amemiya, R.; Fujii, A.; Yamaguchi, M. Tetrahedron Lett. 2004, 45, 4333; (c) Kobayashi, K.; Arisawa, M.; Yamaguchi, M. J. Am. Chem. Soc. 2002, 124, 8528.
- 6. Amemiya, R.; Nishimura, Y.; Yamaguchi, M. Synthesis 2004, 1307.
- 7. (a) Mikami, S.; Yorimitsu, H.; Oshima, K. Synlett 2002, 1137; (b) Gelman, D.; Shumann, H.; Blum, J. Tetrahedron Lett. 2000, 41, 7555; (c) Blum, J.; Berlin, O.; Milstein, D.; Ben-David, Y.; Wassermann, B. C.; Schutte, S.; Shumann, H. Synthesis 2000, 571; (d) Araki, S.; Horie, T.; Kato, M.; Hirashita, T.; Yamamura, H.; Kawai, M. Tetrahedron Lett. 1999, 40, 2331; (e) Blum, J.; Gelman, D.; Baidossi, W.; Shakh, E.; Rosenfeld, A.; Aizenshtat, Z.; Wassermann, B. C.; Frick, M.; Heymer, B.; Schutte, S.; Wernik, S.; Schumann, H. J. Org. Chem. 1997, 62, 8681; (f) Han, Y.; Huang, Y. Z.; Zhou, C. M. Tetrahedron Lett. 1996, 37, 3347.
- 8. (a) Fukuda, Y.; Matsubara, S.; Lambert, C.; Shiragami, H.; Nanko, T.; Utimoto, K.; Nozaki, H. Bull. Chem. Soc. Jpn. 1991, 64, 1810; (b) Kobayashi, S.; Koide, K.; Ohno, M. Tetrahedron Lett. 1990, 31, 2435; (c) Utimoto, K.; Lambert, C.; Fukuda, Y.; Shiragami, H.; Nozaki, H. Tetrahedron Lett. 1984, 25, 5423.
- 9. Falorni, M.; Lardicci, L.; Giacomelli, G. Tetrahedron Lett. 1985, 26, 4949.
- 10. Use of trialkylgallium as base. (a) Kopp, M. R.; Krauter, T.; Dashti-Mommertz, A.; Neumuller, B. Organometallics 1998, 17, 4226; (b) Yamamoto, Y.; Furuta, T. Chem. Lett. 1989, 18, 797.
- 11. Under an argon atmosphere, to a mixture of 2 (2.25 mmol, 0.36 mL) and $2,6$ -di(t-butyl)-4-methylpyridine (0.38 mmol, 77 mg) in o -dichlorobenzene (0.19 mL) were added butyllithium (1.6 M solution in hexane, 0.3 mmol, 0.19 mL), GaMe₃ (1.0 M solution in hexane, 0.3 mmol, 0.3 mL), and 1 (cis:trans = 1:1.5) (0.75 mmol, 198 mg, 0.18 mL) at 0 °C. The mixture was stirred at 180° C for 12 h, when water (10 mL) was added. The organic materials were extracted with ether, washed with water and brine, dried over MgSO4, and concentrated under reduced pressure. The residue was purified by flash column chromatography (hexane–toluene $= 2.5:1$) to give *cis*-4a (246 mg, 61%) and trans-4a (110 mg, 27%).
- 12. Under an argon atmosphere, to a mixture of isobutyrophenone 12a (1.0 mmol, 0.15 mL), 2 (3.0 mmol, 0.57 mL) and 2,6-di(t-butyl)-4-methylpyridine (0.3 mmol, 62 mg) in o -dichlorobenzene (4.0 mL) was added GaEt₃ (1.0 M solution in hexane, 0.25 mmol, 0.25 mL) at 0° C. The mixture was stirred at 180 $\mathrm{^{\circ}C}$ for 8 h, when water (10 mL) was added. The organic materials were extracted with ether, washed with water and brine, dried over MgSO4, and concentrated under reduced pressure. The residue was purified by flash column chromatography (hexane–toluene = 3:1) to give 13a (228 mg, 0.80 mmol, 80%).